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Abstract

Cells rely on their cytoskeleton for key processes including division and directed motil-
ity. Actin filaments are a primary constituent of the cytoskeleton. Although actin filaments
can create a variety of network architectures linked to distinct cell functions, the microscale
molecular interactions that give rise to these macroscale structures are not well understood.
In this work, we investigate the microscale mechanisms that produce different branched actin
network structures using an iterative classification approach. First, we employ a simple yet
comprehensive agent-based model that produces synthetic actin networks with precise control
over the microscale dynamics. Then we apply machine learning techniques to classify actin
networks based on measurable network density and geometry, identifying key mechanistic
processes that lead to particular branched actin network architectures. Extensive computa-
tional experiments reveal that the most accurate method uses a combination of supervised
learning based on network density and unsupervised learning based on network symmetry.
This framework can potentially serve as a powerful tool to discover the molecular interac-
tions that produce the wide variety of actin network configurations associated with normal
development as well as pathological conditions such as cancer.

1. Introduction

Actin, the most abundant protein in eukaryotic cells, is involved in a wide range of key
cellular functions including cell motility, cell differentiation, muscle contraction, and cytoki-
nesis (1; 2). Actin monomers form rod-like actin polymers, which are constantly assembled,
disassembled, and remodeled by accessory proteins and molecular motors. Because of the
noise-dominated complex dynamics, the resulting actin networks have a variety of archi-
tectures with distinguishable biochemical and mechanical properties. One notable actin
meshwork is the branching protrusive network in the lamellipodium, which is the thin, sheet-
like extension used for directed cell movement on flat surfaces (3). Previous quantitative
studies have demonstrated that the growth of the branching network must be primarily
two-dimensional to maintain the integrity of the lamellipodium (4). Abnormalities in the
structure and function of the lamellipodium have been implicated in a variety of diseases,
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including cancer metastasis, neurological disorders, and immune disorders (5). Despite the
importance of the lamellipodium in cellular functions, a direct and comprehensive link from
local molecular dynamics to network organization to cellular behavior has yet to be estab-
lished.

Branched actin networks emerge as a result of the complex interplay between various
known molecular processes as follows (2). Actin filaments grow or shrink through the ad-
dition or loss of actin monomers from their pointed and barbed ends. Filament branching
occurs when an Arp2/3 protein complex binds to a filament and creates a nucleation site for
a new filament to extend from the existing one at a 70○ angle (6). Capping proteins prevent
the additional growth of an actin filament by binding to the barbed end. Depending on the
intracellular environment that actin networks grow in, including the availability and distribu-
tion of resources (actin monomers) and regulators (capping proteins and Arp2/3 complexes),
branched actin structures can exhibit vastly different shapes and internal organizations. Our
focus is on the inverse problem: given such a network, what are the underlying growth con-
ditions that gave rise to the observed architecture? The power of such a technique lies in
its predictive nature; for example, we can predict that a “spiky” network is due to limited
availability of Arp2/3 complexes.

To address the need for an inverse mapping from macroscopic networks to underlying
microscopic formation dynamics, we present a novel analysis pipeline. The pipeline is a two-
pronged approach based on synthetic networks with prescribed local dynamics, along with
machine learning and topological tools. The first prong is an agent-based stochastic model
that allows us to construct protrusive actin structures in two dimensions. Building on our
previously published work, we create a stochastic model that generates actin structures by
tuning various interactions and parameters (7). With this in silico approach, networks are
generated quickly and inexpensively while molecular processes and parameters are controlled
in a systematic way. The generation of synthetic data is an important step for our classifica-
tion method since few experiments exist for lamellipodium-like network growth in controlled
environments.

The synthetic branched actin networks are used in the second part of our approach,
which applies machine learning techniques to identify the governing principles that give rise
to a network architecture. We formulate this process as a classification problem in which
we classify images of networks with respect to the underlying local molecular interactions.
To solve this problem, we then leverage the data-processing power of a variety of machine
learning algorithms including the convolutional neural networks (CNNs), which specialize in
processing data on a grid and have been successful at image classification. We perform both
fine-grained classification and coarse-grained classification; the former aims to pinpoint the
exact combination of molecular processes that give rise to a specific actin structure, whereas
the latter uncovers the distinct dominating mechanisms. The coarse-grained classification
is developed based on the observation that different mechanisms can lead to very similar
network architectures, making fine-grained classification unreliable. Our improved approach
combines supervised (CNN) and unsupervised (k-means clustering) learning methods, and
utilizes both raw and symmetry-transformed data. Using simulated data, we find that the
fine-grained classifier has an accuracy ranging between 66% and 90% depending on the net-
work growth condition, while the coarse-grained classifier boasts an accuracy of 87% − 99%.
The unsupervised regrouping of the growth conditions into coarse-grained classes identifies
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Figure 1: Outline of the analysis pipeline for identifying the governing dynamics of observed
architectures of synthetic branched actin networks. A detailed description of the analysis, which
combines agent-based modeling, machine learning methods, and image processing, is in Section 2.

limiting capping proteins and branching complexes as primary drivers of network architec-
ture. The success of our method on synthetic networks is a promising step towards the
ultimate discovery and analysis of regulatory mechanisms in experimentally obtained actin
networks.

2. Methods

2.1. Generation of synthetic branching actin networks

In our previous work, we built an agent-based computational framework to capture the
local microstructure of branching actin networks under various intracellular conditions (7)
(top, Figure 1). The framework uses a molecular-level representation of dynamically assem-
bling and disassembling polymers (actin filaments) in two dimensions. In order to capture
more of the biological complexity of branching networks, we extend this framework to include
capping and limited molecular resources in addition to polymerization, depolymerization, and
branching of polar actin filaments.

3



The dynamics used to generate synthetic actin networks are summarized in Figure 2A.
Implementation of network dynamics and rates is chosen to closely match biological measure-
ments. A branching actin network is formed from a single nucleation site in a two-dimensional
domain. By excluding the third spatial dimension, we assume the branching actin network
to be relatively flat as observed in lamellipodia (8). Filaments are represented as rigid rods
with a spatially fixed base and a barbed tip capable of growing or shrinking. Changes in
both actin filament length and overall network structure are due to the addition or removal of
single actin monomers and branching via branching proteins (Arp2/3 nucleation complexes)
at the free end. Filament growth and shrinkage occur in discrete increments corresponding
to the length of an actin monomer, 0.0027 µm (9). Based on the known effect of the Arp2/3
complex, the newly branched filament is assigned to grow in a direction that is 70○ on ei-
ther side of the preexisting filament tip (10). Capping proteins are incorporated and they
regulate actin filament length by binding to the barbed end of a filament; this blocks the
addition or loss of monomers from that filament (11). The concentration of free monomers
and branching proteins can be either unlimited or limited; both cases are considered in our
work. Additional implementation details are available in Appendix A.1, along with model
parameters and computational constants found in Table A1 and explained in Appendix A.2.
The simulation and analysis of actin networks are implemented in a custom Matlab code.2

The spatial domain of each simulation is a 10 µm × 10 µm square, which is comparable
to the size of eukaryotic cells. To extrapolate a corresponding density from a discrete actin
network architecture, the computational domain is uniformly subdivided into a 49 × 49 grid
of size 0.2 µm × 0.2 µm. The choice of grid resolution represents a balance between compu-
tational cost and underlying filament and monomer sizes. At the end of a given simulation,
we calculate the total length of actin filaments contained in each discretized grid box. Since
this length is a scalar multiple of the number of actin monomers contained in a grid box,
we take the length divided by the area of the grid box, 0.04 µm2, to be the actin density
at the center of that box. The result is a 49 × 49 grayscale image of actin densities, where
the brighter a pixel is, the higher the actin density is at that location (see the top panel of
Figure 1 and Appendix A.3).

The data used to train and validate the classification algorithms consists of density images
of actin networks generated under eight possible growth conditions labeled 0, 1, 2,. . . , 7.
These eight categories include all combinations of capping or no capping, limited or unlimited
Arp2/3 branching complexes, and limited or unlimited actin monomers (Table 1). For each of
the six capping probabilities considered (Table 2) and each of the eight growth conditions, 300
independent simulations are run, totaling 2400 simulated actin networks to be analyzed and
classified for their underlying molecular dynamics. The networks are divided into training,
validation, and test sets as follows. A group of 75 networks for each growth condition (600
networks total) are randomly selected for the training data. From the remaining networks,
we randomly select a group of 25 networks per condition (200 networks total) to be used for
validation. The networks that have not been selected for either the training set or validation
set (200 per condition, 1600 networks total) comprise the test data. The training, validation,
and test sets are disjoint and produced by independent runs of the microscale model.

2https://github.com/bbannish/actin
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Figure 2: (A) Schematic of actin kinetics incorporated in our simulation framework. Actin filament
growth begins at the initial nucleation site (blue) through polymerization. Monomers have a polymerization
probability of p0poly and a depolymerization probability of p0depoly. Attachment of Arp2/3 complex (red) to
the filament facilitates Y-branching. Association or disassociation of monomers to/from a filament can be
halted by the binding of capping proteins (light blue) with probability pcap. (B) Sample actin network
architectures arising from various growth conditions. All networks are shown after 10 s with a
simulation domain of a 10 µm × 10 µm square. For ease of comparison, the initial angle of growth from the
nucleation site was kept constant between all simulations.

2.2. “Fine-grained” actin network classification

To assign a class or label to a given actin network as resulting from one of the eight
growth conditions, we build classifiers using supervised machine learning techniques based
on the images of actin densities and compare their performance. Foreshadowing the findings
in the next section, we refer to this type of classification as “fine-grained.”

2.2.1. Classification based on density

The supervised machine learning algorithms considered are: convolutional neural network
(CNN) (12), support-vector machine (SVM) (13), k-nearest neighbors (k-NN) (14), ensemble
algorithms (15; 16), and neural network (NN) (17). We use “non-CNN” to mean supervised
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Label Capping Branching Monomers

0 ● 5 Unlimited Unlimited
1 ● 3 Unlimited Unlimited
2 ● 5 Limited Unlimited
3 ● 5 Unlimited Limited
4 ● 3 Limited Unlimited
5 ● 3 Unlimited Limited
6 ● 5 Limited Limited
7 ● 3 Limited Limited

Table 1: Fine-grained labels. Eight possible fine-grained growth conditions for actin networks.

machine learning methods other than CNN. All classifiers are built for the two-dimensional
actin density plots taken at a fixed time point as described in Section 2.1. The CNN classifier
uses the density data in its natural dimension, a 49 × 49 matrix (image), whereas the non-
CNN classifiers use the same data arranged into a 492 × 1 vector. For each of the six capping
probabilities considered (see Table 2), we proceed as follows:

Step 1 Generate training data: The training data is composed of density plots of 600 actin
networks (75 networks per growth condition) simulated by the same number of inde-
pendent runs of the microscale model and labeled by their classes 0,1,2, . . . ,7 according
to their respective growth conditions.

Step 2 Train classifiers: We consider CNN and 22 non-CNN classifiers:

• six SVM variants: linear, quadratic, cubic, fine Gaussian, medium Gaussian, and
coarse Gaussian;

• six k-NN variants: fine, medium, coarse, cosine, cubic, and weighted;

• five ensemble algorithms: boosted trees, bagged trees, subspace discriminant, sub-
space k-NN, and random undersampling boosted trees;

• five NN variants: narrow, medium, wide, bilayered, and trilayered.

Matlab’s Classification Learner App3 is used for all non-CNN classifiers and the CNN
classifier is implemented using a custom code with built-in functions from Matlab’s
Deep Learning Toolbox 4 and Statistics and Machine Learning Toolbox5. All 23 clas-
sifiers are trained on networks in the training set. Once trained, each classifier is a
function that maps the density image (for the CNN classifier) or vector (for a non-
CNN classifier) of a network to its predicted label, an integer between 0 and 7.

Step 3 Evaluate performance: We calculate and compare the accuracy of all classifiers on
data not used in the training process. A classifier is successful at labeling an actin

3https://www.mathworks.com/help/stats/classificationlearner-app.html
4https://www.mathworks.com/help/deeplearning/index.html
5https://www.mathworks.com/help/stats/index.html
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Figure 3: Schematic for quantification of approximate symmetries in the actin density images
using transformation information (TI). The image is modified using an affine transformation (in this
case, rotation by angle θ). The original and transformed images are compared to determine the amount of
information lost by using the newly transformed image to approximate the original. Minima of the TI curve
indicate approximate symmetries in the actin network.

density plot if its predicted label agrees with the true label and unsuccessful otherwise.
The percentage accuracy of a classifier is defined as

# of actin density plots correctly labeled by classifier

total # of actin density plots
⋅ 100%. (1)

First, we calculate the percentage accuracy of the 22 non-CNN classifiers on the vali-
dation data composed of 200 images of actin density (25 per growth condition). This
allows us to identify the best non-CNN classifier as the one with the highest percentage
accuracy. Then, to compare the best performing non-CNN classifier and the CNN clas-
sifier, we compute their respective percentage accuracy on the test data, which consists
of 1600 actin density plots (200 per condition).

2.2.2. Quantification of shape symmetry

To identify geometric properties of simulated actin networks, we calculate the transfor-
mation information (TI) associated with each network density plot as outlined in (18). The
TI function quantifies the amount of information lost by approximating the original image
by the transformed image. More specifically, the value of the TI function measures how
approximate the symmetry is, with minima of the TI function indicating the transformation
that results in the least change from the original image. Here, an affine transformation corre-
sponding to rotation is used to quantify the symmetry properties in the actin network. The
function µ(x) is the actin density at location x in each image. The steps for calculating the
TI curve are outlined below and shown graphically in Figure 3:

Step 1 Obtain TI measurements by:

TI = 1

∣D̃∣ ∫
D̃

µ(x) ln( µ(x)
Tθµ(x)

)dA, (2)
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where Tθ is the rotation of the image by angle θ, D̃ is the domain intersection of the
original and transformed images, ∣D̃∣ = ∫̃

D

dA, and dA is the area element. We repeat the

calculation and compute the TI for each increment of the transformation parameter,
angle θ, to obtain TI as a function of angle θ.

Step 2 Identify approximate symmetries: Find and rank minima of the TI curve in order
to identify approximate symmetries of the actin density plots. For example, a TI value
of 0 indicates perfect symmetry.

Further details of the TI calculation and Matlab code are in (18).

2.2.3. Classification based on shape symmetry

For each plot of the actin network density, the TI calculation produces a 361×1 vector (or
a curve); the ith entry of the vector is the TI measurement for the transformation parameter
θi = (i−1) degrees for i = 1,2, . . . ,361. The non-CNN supervised classifiers can also be applied
to the TI curves extracted from the actin density plots. The process is the same to the one
described in Section 2.2.1 since the TI curves carry the same fine-grained labels 0,1, . . . ,7
associated with growth conditions.

2.3. “Coarse-grained” actin network classification

Different growth conditions may result in similar network architectures. Therefore, fewer,
more identifiable classes are sometimes desired. In order to reveal governing motifs of emer-
gent network architectures, we propose a “coarse-grained” classification which results in fewer
than eight classes. Our approach combines supervised and unsupervised machine learning
techniques; first, an unsupervised algorithm is applied to identify the new, fewer than eight,
groupings in the dimension-reduced TI curves extracted from actin density plots, and then a
supervised learning algorithm is used to build a classifier that determines which new grouping
(or label) to assign to a particular actin density plot. The procedure is outlined below.

Step 1 Identify new classes: To abstract away fine-level detail, we use principle component
analysis (PCA) to transform each TI curve (a 361 × 1 vector) to a 2 × 1 vector referred
to as the “reduced” TI curve. The reduced TI curve consists of the two leading coeffi-
cients given by PCA. Next, we apply k-means, a widely used unsupervised clustering
algorithm, to identify the k groupings (clusters) of the reduced TI curves (19). We
use Matlab’s built-in function for k-means6 and repeat it for k between 1 and 12.
The sum of distances between data points and their group centroids is used to assess
the “tightness” of a grouping. Among the twelve values of k considered, we choose
a relatively small k < 8 that is still large enough for the k clusters to be identifiable.
We then proceed to divide the original eight growth conditions into k groups. Growth
condition i is placed in the jth group if the majority of the reduced TI curves originally
labeled with i are placed in the jth group by k-means.

6https://www.mathworks.com/help/stats/index.html
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Capping Fine-grained Coarse-grained
probability non-CNN (best) CNN TI-based non-CNN

(best)
CNN

0.00025 69% (quadratic SVM) 82% 53% (trilayered NN) 99%
0.00050 84% (linear SVM) 90% 64% (linear SVM) 98%
0.00100 81% (quadratic SVM) 89% 66% (quadratic SVM) 96%
0.00150 77% (medium

Gaussian SVM)
84% 63% (median NN) 87%

0.00250 67% (narrow NN) 74% 61% (narrow NN) 87%
0.00375 65% (medium

Gaussian SVM)
66% 52% (quadratic SVM) 98%

Table 2: Accuracy of all tested machine learning classification algorithms of synthetic actin network archi-
tectures.

Step 2 We relabel each actin density plot according to the correspondence between the
original eight growth conditions and the new k groups identified in Step 1. As an
example, consider the case where k = 3 and the three groups are labeled A, B, C. If
the original label 4 is deemed a member of the group A in Step 1, then all the density
plots previously labeled with 4 will be relabeled with A.

Step 3 Rebuild and re-evaluate the CNN classifier: Repeat Steps 2 to 3 in Section 2.2.1
using the relabeled data.

3. Results

We present a robust, rotation-invariant, and noise-insensitive computational pipeline for
the inverse mapping from a synthetic actin network to its underlying molecular kinetics. In
the pipeline, an actin network is fed through the fine-grained classifier to identify molecular
growth conditions (Sections 2.2.1 and 2.2.3) or through the coarse-grained classifier to iden-
tify primary dynamics (Section 2.3). Training the supervised statistical methods for accurate
classification may require a large set of networks labeled according to their underlying molec-
ular kinetics. To rapidly generate tens of thousands of actin networks with known dynamics,
we employ our molecular kinetics-based modeling framework outlined in Section 2.1.

3.1. Stochastic simulations produce synthetic actin networks with a variety of architectures,
particularly in the presence of limited resources

We adjust parameter values in the stochastic simulations to generate diverse actin net-
works, some of which are shown in Figure 2B. For the networks presented here, the polymer-
ization and depolymerization probabilities are held constant across simulations, while the
capping probability is varied (see Appendix A.2 for details).

As expected, the addition of capping proteins and limited resources to the actin kinetics
modeling framework, individually or in combination, changes the resulting network architec-
ture (Figure 2B). With unlimited resources and no capping, a dense and highly branched
network forms (Figure 2B.a). The network remains dense and branched for low capping prob-
abilities (pcap = 0.00025 and pcap = 0.001), but as the capping probability increases further,
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polymerization and depolymerization are halted, resulting in much smaller, sparser networks
(Figure 2B.m,q,u). In cases with low or no capping, the addition of limited Arp2/3 branch-
ing complexes (Figure 2B.b,f,j) results in longer filaments once all the Arp2/3 complexes are
used; with no additional Arp2/3 complexes, no further branching can occur, so filaments
only polymerize and depolymerize. These longer filaments are not seen at higher capping
probabilities (Figure 2B.n,r,v) because filaments are capped before they can grow too long.
Regardless of the capping probability, simulations with limited monomers result in signifi-
cantly smaller networks (Figure 2B.c,g,k,o,s,w); this is because once all the actin monomers
are used, no further bulk growth can occur and only slight structural modifications to the
network continue, as individual monomers depolymerize and re-polymerize elsewhere in the
network. Finally, in cases with both limited Arp2/3 complexes and limited monomers (Fig-
ure 2B.d,h,l,p,t,x), networks are spatially reduced, with emergence of some longer filaments
at low capping probabilities (Figure 2B.d,h,l,p) that are not present at higher capping prob-
abilities (Figure 2B.t,x).

3.2. Extreme capping rates obscure the role of other dynamics when classifying network struc-
tures using standard machine learning techniques

Our first attempt at constructing a classifier relies on non-CNN supervised machine learn-
ing algorithms: support-vector machines, k-nearest neighbors, ensemble algorithms, and neu-
ral networks. For each capping probability listed in Table 2, we generate 300 actin density
plots for each of the eight growth conditions with labels j = 0,1,2, . . . ,7. The generated data
is partitioned into training, validation, and test sets as described in Section 2.1. The leftmost
three columns in Figure 4 show 12 actin density plots, with their respective labels placed
above them, randomly selected from the training set for an intermediate capping probability,
0.001. The accuracy of each algorithm is evaluated on the validation set to determine which
classifier has the highest accuracy. The accuracy of this classifier for the test data is reported
in Table 2 for each of the six capping probabilities considered. We find that the accuracy of
the best non-CNN classifier ranges between 65% and 84% depending on the capping prob-
ability. Interestingly, the highest accuracy is obtained with mid-range capping probabilities
(0.0005 − 0.0015). That is, at extreme capping rates, the underlying dynamics are not fully
uncovered by any of the non-CNN classifiers.

3.3. Networks grown under widely varying conditions are distinguishable when both actin
density and network geometry are evaluated

To improve the overall accuracy of the classification pipeline in the previous section,
we turn our attention to CNNs. This class of statistical learning methods has been highly
successful at detection of visual imagery (12; 20). We train and evaluate the performance of
a CNN classifier as implemented in Section 2.2.1. The validation data is used to inform the
choice of CNN hyper-parameters such as the number of network layers and network nodes.
The accuracy of the CNN classifier on the test set is summarized in Table 2. The accuracy
ranges between 66% and 90%, with an improvement over the best non-CNN classifier for
every capping probability. The CNN classifier is more accurate when the capping probability
is not too high. In the rightmost four columns in Figure 4, for a fixed capping probability
of 0.001, we show 16 actin density plots randomly selected from the test set, along with
their true labels and the labels predicted by the CNN classifier if the two are different. For
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Figure 4: Randomly selected actin density plots and their corresponding fine-grained labels. A
brighter pixel indicates a higher actin density and brightness is scaled across an individual figure. Across all
images, the capping probability is held fixed at an intermediate value (pcap = 0.001). The 12 plots (left, gray)
are part of the training set used for tuning the classifiers. The 16 images (right, blue) are from the test set
used for evaluating and comparing the classifiers. A check mark indicates that the CNN classifier accurately
predicts the true label. The density plots wrongly classified by CNN are outlined in red. For any incorrect
CNN predictions, the true labels are listed in parentheses.

visualization purposes only, the raw data is re-scaled such that for an individual image, the
highest density is 1 and the lowest density is 0 (see Appendix A.3 for more details).

Additionally, we find that the CNN classifier is insensitive to rotations (see Appendix
A.4) or additive noises up to 10% (see Appendix A.5). Due to the dynamical growth of
the network from a nucleation site, the observation time does impact the accuracy of the
classification (see Appendix A.6). We observe that if the time at which the test data are
collected deviates from the time at which training data are collected by no more than 5%,
then the accuracy of the classifier will hardly degrade, allowing room for error in a lab setting
where precise control of data collection time is difficult to achieve. As the two times move
further apart, however, the accuracy of the classifier can decrease considerably.

Since the CNN classifier uses image data (rather than vectorized data) and hence preserves
spatial information of the simulated actin networks, the better performance of the CNN
classifier over the non-CNN classifiers suggests that the geometric properties of the network
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may be important for classification. For higher capping probabilities such as 0.00375, none of
the classifiers, CNN or non-CNN, can uncover the growth condition with high accuracy. We
speculate that this is because when the capping probability is high, actin networks generated
under different growth conditions can approach a similar morphology.

3.4. Symmetric properties of actin networks alone are insufficient to distinguish underlying
generating mechanisms

To test whether geometric properties of the actin networks alone may accurately classify
networks, we use a novel and robust measure of symmetry that is grounded in concepts
of entropy and information theory called transformation information (TI) (18). We apply
this method to quantify asymmetries of actin density plots under image transformations
parameterized by the rotation angle θ as outlined in Section 2.2.3 (Figure 3). The outcome
is a TI curve associated with each network as a function of angular rotation of the network.

Next, we apply the same standard non-CNN machine learning techniques from Section 3.2
to the TI curves extracted from the same data. That is, we train and evaluate the performance
of 22 non-CNN classifiers on TI curves of actin networks grown under the six capping prob-
abilities considered previously. For each capping probability, we identify the best non-CNN
classifier as in Section 3.2 and report its accuracy in Table 2. The accuracy ranges between
52% and 66%, lower than density-based classification. Like the density-based classifiers, it
performs worse for the extremes of the capping probability range. The best symmetry-based
non-CNN classifier is always less accurate than the best density-based non-CNN classifier,
indicating that symmetry of the network alone is insufficient to identify the distinct growth
condition of an actin network.

To investigate the potential role of network symmetry, we would like to visualize the TI
curves but cannot easily do so due to the large dimension, 361, of the data (see Section 2.2.3).
A dimension reduction by linear principal component analysis (PCA) is performed on the TI
curves. The first two principal components of the linear PCA of the TI curves are calculated,
and they account for at least 93% of the variance in the TI data. The visualization of the
symmetry information in a reduced two-dimensional space in Figure 5 leads us to hypothesize
that the symmetry information can be used to identify coarser level categorization of the data.
For example, for the case of low capping probability in Figure 5A, networks with labels 2
(blue) and 5 (magenta) appear to have a similar “vascular” topology. Likewise, networks
with labels 0 (red) and 1 (green) share a similar “round” topology, while networks with label
6 (black) are relatively small. Similar conclusions can be drawn for cases with intermediate
and high capping probabilities in Figure 5B and 5C respectively.

3.5. Symmetry-informed unsupervised clustering reveals three dominant network architecture
groupings

Based on the visualization of the dimensionally reduced TI curves of actin density plots,
we postulate that there exists a smaller set of dominant dynamics contributing to a given
network architecture. We apply the k-means unsupervised clustering algorithm to the reduced
TI vectors extracted from the training set to identify a partitioning of the data into k groups,
where k is an integer between 1 and 12. In Figure 6A, for three representative capping
probabilities (0.00025, 0.001, and 0.00375), we show the sum of distances between each
reduced TI vector and the centroid of the group that it belongs to as the number of groups
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Figure 5: Visualization of the reduced TI curves. Principal components capture key shapes correspond-
ing to “round” versus “spiked-edge” networks. Each dot represents an individual image, and representative
images are indicated. Label 0: red; label 1: green; label 2: blue; label 3: cyan; label 4: magenta; label 5:
yellow; label 6: black; label 7: purple. (A) Low capping probability, pcap = 0.00025. (B) Intermediate capping
probability, pcap = 0.001. (C) High capping probability, pcap = 0.00375.
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Figure 6: Identification of coarse-grained labels through unsupervised clustering of the reduced
TI curves. (A) The sum of the distances between the reduced TI vectors and their respective group centroid,
as a function of the number of groups used in the k-means algorithm. (B) Partition of the reduced TI vectors
into three groups by k-means. Each triangle or star represents the reduced TI vector extracted from an
actin density plot. Label A: red triangle; label B: blue triangle; label C: black triangle; label X: purple star;
label Y: gray star; label Z: light blue star. Low, intermediate, and high capping probabilities correspond to
pcap = 0.00025, 0.001, and 0.00375, respectively.

increases from k = 1 to k = 12. These plots suggest that k = 3 achieves a good balance between
the tightness of the groups and the number of groups. The subplots in Figure 6B show the
three groups of reduced TI vectors partitioned by k-means for each capping probability. The
grouping appears to be predominantly along the first principal component. For capping
probabilities of 0.00025 and 0.001, we label the three clusters as “A”, “B”, and “C” and
the correspondence between the eight original labels and the three new labels is in Table 3.
For low and intermediate capping probabilities, whether and which resources are limited are
the main factors in determining the network architecture. Growth conditions with unlimited
resources are labeled “A”, growth conditions with limited Arp2/3 complexes and unlimited
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New
label

Old label Capping Branching Monomers

A 0 5 Unlimited Unlimited
A 1 3 Unlimited Unlimited
B 2 5 Limited Unlimited
B 4 3 Limited Unlimited
C 3 5 Unlimited Limited
C 5 3 Unlimited Limited
C 6 5 Limited Limited
C 7 3 Limited Limited

Table 3: Coarse-grained labels. Three coarse-grained groups for actin networks with low and intermediate
capping probability.

monomers are labeled “B”, and growth conditions with limited actin monomers are labeled
“C”.

In the case of high capping probability, we label the three clusters as “X”, “Y”, and
“Z” and Table 4 gives the correspondence between the eight fine-grained labels and these
three new labels. Whether capping is present and whether branching is limited are the main
contributors to the network architecture. Growth conditions that do not include capping are
labeled “X” or “Z”, while growth conditions that do include capping are all labeled “Y”.
As only one growth condition without capping (the condition which has limited Arp2/3
complexes and unlimited actin monomers) is labeled by “Z”, we can conclude that while
capping is the biggest determinant in labeling the data, limited branching is also a feature
in distinguishing network architecture.

3.6. Actin networks with defined microscale dynamics can be grouped into three classes with
high accuracy even for extreme capping rates

A CNN classifier for coarse-grained classification is constructed, which labels actin net-
works according to their dominant mechanisms rather than their original growth conditions.
The classifier still takes images of actin density and produces predicted labels; the difference is
that the labels now correspond to the clusters found by k-means for k = 3. The same training
and testing data sets are used as previously. In Table 2, the accuracy of the new TI-informed
CNN classifier on the test set is reported for the six capping probabilities. We note that
the dominant mechanisms can vary with the capping probability, as shown in Section 3.5.
For every capping probability considered, the TI-informed CNN classifier is more accurate
at the coarse-grained classification than the original CNN classifier is at the fine-grained
classification. Now, its accuracy ranges between 87% and 99%, and interestingly, it performs
exceedingly well for extreme capping probabilities, a regime where the original CNN classifier
has lower accuracy for fine-grained classification. Lastly, in Figure 7, for intermediate cap-
ping probability of 0.001, we re-plot the 12 actin networks from the training set and 16 actin
networks from the test set shown previously in Figure 4 but now with their coarse-grained
labels. The labels predicted by the TI-informed CNN classifier are also included if they are
different from the correct coarse-grained labels.
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New
label

Old label Capping Branching Monomers

X 8 0 5 Unlimited Unlimited

X 8 3 5 Unlimited Limited

X 8 6 5 Limited Limited

Y 8 1 3 Unlimited Unlimited

Y 8 4 3 Limited Unlimited

Y 8 5 3 Unlimited Limited

Y 8 7 3 Limited Limited

Z 8 2 5 Limited Unlimited

Table 4: Coarse-grained labels at high capping probability. Three coarse-grained groups for actin
networks with high capping probability.

4. Conclusions & Discussion

Actin is an abundant protein that organizes into network structures that play critical
roles in cellular processes, including division and directed cell migration. Defects in actin
networks, such as the branching protrusive network in the lamellipodium, are correlated with
disease states (21), and studies of actin-related primary immunodeficiencies have also pointed
to the mounting evidence of the role of actin structures in a successful immune response (22).
Despite the importance of actin network organization, the significance of particular microscale
interactions in shaping branched actin networks is not yet clear. Part of the challenge is
due to the difficulty of growing branched networks in vitro under controlled conditions.
Toward this end, we develop an iterative process for network classification: starting with a
stochastic model that allows us to “grow” actin networks in a wide variety of settings, we
then classify the resulting networks using machine learning techniques informed by network
theory-inspired measures. These techniques identify the dominant mechanisms leading to a
given actin network, providing mechanistic information and testable hypotheses.

Our stochastic model is able to effectively and efficiently produce a large number of actin
networks with known, diverse growth conditions, which are necessary to train our classifiers.
The machine learning algorithms in turn identify a small number of meaningful categories
hidden in the vast amount of training data, even in the presence of noise and rotations, and
allow us to extract information about the dominant microscale dynamics responsible for a
given actin network whose growth condition is unknown. By incorporating information from
multiple sources (network density and geometry) and focusing on dominant dynamics, we
are able to improve classification performance when compared to the same algorithm that
uses a single information source (density) and aims to identify detailed dynamics.

We consider a variety of machine learning algorithms based on network density and/or
network symmetry and find that the most successful approach is the following: first use an
unsupervised clustering algorithm of the approximate network symmetries to identify a few,
significant groups of molecular processes, and then use a CNN classifier that has been trained
on density data re-labeled according to the groups emerging from unsupervised clustering to
classify synthetic networks. CNN has been successfully applied to image analysis, and since
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actin density is sampled on a two-dimensional grid, CNN is a sensible method to use. Indeed,
we observe that CNN is more accurate at network classification than other non-CNN methods
considered including the SVMs. This implies that the geometry of actin networks, not just
the density, is important in identifying their growth conditions. However, we also find that
even with CNN, classifying actin networks according to their precise growth conditions is
still challenging since multiple growth conditions can lead to similar actin networks. The
importance of network geometry and the desire to accurately identify dominant molecular
dynamics motivate our approach of coupling TI-based clustering and CNN classification based
on density data.

Figure 7: Networks from Figure 4, with their corresponding coarse-grained labels. The images
from the test set misclassified by the TI-informed CNN classifier are outlined in red. Their labels predicted
by the CNN are listed in parentheses. A check mark indicates that the CNN-predicted label matches the
true label. The plots shown are for an intermediate capping probability, pcap = 0.001.

We use relatively standard algorithms for classification such as CNN, and do not rely
on state-of-the-art algorithms for image detection (23), demonstrating that the impact of
microscale growth conditions can be distinguished from macroscale images. While it is con-
ceivable that the performance of our methodology could be improved with more sophisticated
algorithms, we achieve high accuracy results with CNN. Although we employ synthetic net-
works, our classification workflow can have broader applications: an experimentalist imag-
ing in vitro actin network formation may observe very different network architectures and
may wish to identify the biological growth dynamics that led to the given architecture (Fig-
ure 8). The tools described here serve as an important step toward that goal. Even in
our limited case of a single nucleating site, the discovered labels can provide insight into
the growth condition of the network, for example, whether Arp2/3 branching complexes are
limited. This prediction can be used in conjunction with perturbations and other data to elu-
cidate the dynamics of the system. In some disease states like cancer, actin network growth
is disrupted, and the method described here would be a way to use images of the network
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Figure 8: Schematic of the integration of mathematical, computational, and biological tech-
niques. Iteration of these techniques yields insights into mechanisms underlying branched actin network
growth.

architecture to diagnose possible causes of the disrupted growth (24). The analysis frame-
work developed here can be applied more broadly to understand analogous network-forming
biological systems, including extensions of fungal hyphae or blood vessels networks.
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Appendix

A.1. Detailed description of stochastic simulation of actin networks

In our previous work, we built a tractable agent-based stochastic model to capture the
local microstructure of branching actin networks under various intracellular conditions (7).
The model includes the actin dynamics of polymerization, depolymerization, and branching
of filaments initiated from a single nucleation site. The actin filaments are represented as rigid
rods with a spatially fixed base and a barbed tip capable of growing or shrinking. Changes in
both actin filament length and overall network structure are due to the addition or removal
of actin monomers and branching via the Arp2/3 complex. In the initial model, we assume
that there is an unlimited pool of free monomers and Arp2/3 complexes available to enable
filament growth and branching, respectively. For simplicity, other dynamics of actin networks
such as capping, sliding, bundling, etc. are not considered in the original model.

Briefly, each simulation starts with an actin filament of length zero located at the “nucle-
ation site” placed at the origin. The filament is assigned an angle of growth which is drawn
from a static uniform distribution; the angle of growth prescribes the direction of growth for
that particular filament. At each time step, there are four possibilities for filament dynamics:
(1) the filament grows with probability p0poly; (2) the filament shrinks with probability p0depoly,
provided that the filament has a nonzero length at the start of the time step; (3) the fila-
ment remains the same length; or (4) the filament branches with probability p0branch to create
a new filament, provided that the original filament is at least some critical length Lbranch

(measured from the closest branch point). Filament growth and shrinkage occur in discrete
increments corresponding to the length of an actin monomer, ∆x = 0.0027 µm. Based on the
known biological interaction of the Arp2/3 complex with actin, the newly branched filament
is assigned to grow in a direction that is ±70○ from the preexisting filament tip.

To determine which of the four outcomes happens at a time step, two independent uni-
formly distributed random numbers are generated for each filament in the simulation. If
the first random number is less than p0poly, then polymerization occurs, and if it is greater
than 1 − p0depoly, then depolymerization occurs. If the first random number simultaneously
satisfies both inequalities, then the filament length is unchanged since both polymerization
and depolymerization occur in the same time step. Likewise, filament length is unchanged
if neither inequality is satisfied, since this means neither polymerization nor depolymeriza-
tion occur in the given time step. If the second random number is less than p0branch, and
the filament is at least length Lbranch, then the filament branches to form a new filament,
capable of autonomous growth and branching. This step-wise process is repeated until the
final simulation time is reached. Ultimately, this stochastic model captured molecular-level
effects within the network and sensitivity analysis revealed that the biological parameters
responsible for filament growth and branching kinetics impacted resulting network dynamics
and morphology in a complementary manner. Simulations of branching actin networks were
implemented in a custom Matlab code, with additional implementation details available
in (7).

In the current study, to capture more biologically relevant branching actin networks, we
include capping proteins, limited actin monomers, and limited Arp2/3 branching complexes
as follows (schematic in Figure 2A; the full algorithm flow chart is shown in Appendix Fig-
ure A1). The capping protein regulates actin polymerization by binding to the barbed end

1



of an actin filament, which blocks the addition and loss of monomers from that filament.
In our simulation, capping dynamics are modeled as follows. At each time step, a third
uniform random number is generated for each uncapped filament. If the capping probability
(pcap = rate of capping×time step) is greater than the random number, then the filament can
no longer polymerize or depolymerize. Capping is irreversible; once a filament is capped, it
is capped for the remainder of the simulation. In simulations that include limited resources,
we start with a fixed number of actin monomers (M0 = 10,000) and/or a fixed number of
Arp2/3 complexes (A0 = 24). A polymerization (or branching) event can only occur if there
are available actin monomers (Arp2/3 complexes), and the probability of polymerization
(branching) depends on how many actin monomers (Arp2/3 complexes) remain. In our ini-
tial model with unlimited resources, the polymerization rate was fixed: p0poly = 0.324 ∆t/∆x,
where ∆t is the constant time step, ∆x is the constant space step. Now, with limited re-
sources, we assume that the polymerization rate depends on the number of actin monomers:
ppoly = M

M0
e(M−M0)/M0 p0poly, where M is the number of available actin monomers at the given

time step. Similarly, the branching probability is modified by the number of available Arp2/3
complexes: pbranch = A

A0
p0branch, where p0branch is the branching probability from the unlimited

resources case (chosen from a cumulative distribution function of the standard normal dis-
tribution with mean 2 and standard deviation 1), and A is the number of available Arp2/3
complexes at the given time step. Values for parameters are listed in Appendix Table A1,
and explained in detail in the next section.

A.2. Stochastic simulation parameters

Wherever possible, model parameters are based on experimental values. The probabil-
ity of polymerization is calculated from Pollard and Borisy (2003), which states that actin
monomers elongate the barbed ends of actin filaments at a velocity of 0.3 µm/s (25). Using
the formula

assembly
speed

= polymerization
probability

× length added to
filament

× # time steps per
second

we calculate that

0.3
µm

s
= ppoly × 0.0027µm × 1

0.005 s
,

which implies that ppoly = 0.56 ≈ 0.6. Similarly, Pollard and Borisy (2003) give a range of
dissociation rates of actin monomers from 1.4 − 8 s−1 (25). We choose an intermediate value
of 5.0 s−1 and then calculate

disassembly
speed

= depolymerization
probability

× length removed
from filament

× # time steps per
second

where disassembly speed is obtained via

5.0
subunit

s
× 0.0027

µm

subunit
= 0.0135

µm

s
.

Therefore,

0.0135
µm

s
= pdepoly × 0.0027µm × 1

0.005 s
,
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Figure A1: Microscale model flow diagram.
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which yields pdepoly = 0.025. Literature measurements of actin filament length per branch
vary from 0.02 to 5 µm (26; 6; 27; 28; 29; 30), so we choose Lbranch = 0.2 µm, which is similar
to the values from (29; 30) and is an intermediate value between the orders-of-magnitude-
different literature values. The probability of capping is calculated using the formula

capping probability = capping
rate

× time
step t

× concentration of
capping protein

which gives

pcap = 6.3
1

µM ⋅ s × 0.005 s ×X µM.

The capping rate of 6.3 µM−1s−1 is from (31), and X, the concentration of capping protein,
can take on values up to 0.168 µM (32), which corresponds to pcap = 0.0053. Hence, we look
at a range of capping probabilities from 0 to 0.00375; capping probabilities greater than this
do not result in appreciable actin network growth.

Parameter Meaning Value
p0poly Probability of polymerizing 0.6∗

p0depoly Probability of depolymerizing 0.025∗

pcap Probability of capping 0 − 0.00375
Lbranch Critical length before branching can occur 0.2 µm†

p0branch Probability of branching normal CDF
(µ = 2, σ = 1)

Tend Computational run time 10 s
∆t Computational time step 0.005 s
A0 Initial number of branching complexes 24
M0 Initial number of actin monomers 10,000

Table A1: Microscale model parameter values. Values flagged with one star (∗) were calculated from (25).
For the value flagged with a dagger (†): literature measurements of actin filament length per branch vary
from 0.02–5 µm (26; 6; 27; 28; 29; 30). We choose Lbranch = 0.2 µm as an intermediate estimate between
these orders-of-magnitude-different values from the literature, similar to the values from (29; 30). p0branch is
chosen from a Gaussian distribution with mean µ = 2 and standard deviation σ = 1. A range of pcap values
from 0 to 0.00375 are investigated.

A.3. Scaling

For visualization purposes, a grayscale image can be created for each actin network based
on its filament density. More precisely, the location with the highest density is assigned a 1
(brighest), and the location with the lowest density is assigned a 0 (darkest). As the density
varies considerably among networks generated under the eight different growth conditions,
this re-scaling is performed network by network instead of across all networks to ensure that
networks of lower densities are still visible. Figure A2 shows the re-scaled density plots of
two networks generated under Condition 0 (no capping with unlimited Arp2/3 complexes
and actin monomers) and Condition 7 (capping with limited Arp2/3 complexes and actin
monomers). These two conditions produce the densest and sparsest networks. By comparing
the two plots, we see that the same level of brightness can indicate vastly different densities.
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For all computational purposes, such as the training and testing of classifiers, we use the raw,
un-scaled actin density.
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Figure A2: Comparison of the grayscale images of the density of two actin networks, generated under growth
condition 0 and growth condition 7 respectively, when the capping probability is 0.001.

A.4. Sensitivity to rotation

To determine if our classification method is sensitive to rotation of images, we rotate all
density plots in the training and test data sets for capping probability 0.001 clockwise by
uniformly random degrees between 0 and 360. Sample rotated density plots (corresponding
to the density plots from main text Figure 4) are shown in Figure A3. We retrain the fine-
grain CNN classifier based on this rotated training set, and then classify the rotated test set.
The accuracy of the fine-grained CNN classifier on the rotated images is 89%, identical to
the accuracy of the method on the original images. Hence, we conclude that our method is
not sensitive to rotation.

Figure A3: Samples of rotated density plots from the training and test sets.
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A.5. Sensitivity to salt and pepper noises

To determine if our method is sensitive to noisy data, we “pollute” with salt and pepper
noise the density plots in the training and test sets for capping probability 0.001. In our
first experiment, we randomly select 1% of pixels and randomly change each one to white
or black. We then retrain the fine-grain CNN classifier on the noisy training set, and then
classify the noisy test set. The accuracy of our method with 1% of pixels randomly changed
is 85% (compared to 89% with the original, non-noisy images). We repeat this process with
5% and 10% of pixels randomly set to white or black and obtain 85% and 82% accuracy,
respectively. Sample density plots (corresponding to the density plots from main text Figure
4) with 10% of salt and pepper noise added are shown in Figure A4. We conclude that our
method is not very sensitive to noise.

Figure A4: Samples of density plots from the training and test sets with 10% of salt and pepper noise added.

A.6. Sensitivity to time of data collection

To determine if our method is sensitive to the time of data collection, for capping proba-
bility 0.001 we generate test sets at final simulation times T = 5, 7, 8, 9, 9.5, 9.8, 10.5, 11, and
12 seconds and classify them using the fine-grain CNN classifier obtained based on training
set data collected at time T = 10 s. Snapshots of a single actin network at the different
times are shown in Figure A5. Our method is somewhat sensitive to time of data collection
(Figure A6). The accuracy of the method is best (89%) when both the training and test
sets are collected at time T = 10. The method is reasonably accurate for test sets collected
at T = 9.5, 9.8, 10.5, 11, and 12 seconds (87%, 89%, 89%, 86%, 79%, respectively), but not
very accurate (accuracy < 75%) for test sets collected at T values less than or equal to 9 s.
Despite the sensitivity of the method at early time points, we conclude that the classifier
is robust enough for some human error, since it gives accurate classifications for test sets
collected between 9.5-12 seconds.
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T = 5 T = 7 T = 8 T = 9 T = 9.5

T = 9.8 T = 10 T = 10.5 T = 11 T = 12

Figure A5: Snapshots of an actin network from the test set at various times.
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Figure A6: Accuracy of the fine-grained CNN classifier for time T = 10 on test sets obtained at various time
points.
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