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Abstract

The immersed boundary method is a widely used mixed Eulerian/Lagrangian
framework for simulating the motion of elastic structures immersed in viscous fluids.
In this work, we consider a poroelastic immersed boundary method in which a fluid
permeates a porous, elastic structure of negligible volume fraction, and extend this
method to include stress relaxation of the material. The porous viscoelastic method
presented here is validated for a prescribed oscillatory shear and for an expansion
driven by the motion at the boundary of a circular material by comparing numerical
solutions to an analytical solution of the Maxwell model for viscoelasticity. Finally, an
application of the modelling framework to cell biology is provided: passage of a cell
through a microfluidic channel. We demonstrate that the rheology of the cell cytoplasm
is important for capturing the transit time through a narrow channel in the presence of a
pressure drop in the extracellular fluid.

1. Introduction

Fluid-structure interaction problems are ubiquitous in biological and physical systems.
The immersed boundary method [1] provides a computational framework that couples
the dynamics of the immersed structure with the viscous, incompressible fluid. It
has been applied to many problems such as blood flow in the heart [1], flagellar
swimming [2, 3], and biofilm processes [4]. Recently, the immersed boundary method
has been adapted to simulate poroelastic media in which the fluid permeates a porous,
elastic structure of small volume fraction that moves with its own velocity field [5].
This variant has been applied to study biological systems such as crawling of the
Physarum amoeba [6] and cellular blebbing [7]. However, the method has been limited
to elastic networks, but many biological materials, such as the cell cytoplasm [8] and
collagen gels [9], exhibit stress relaxation due to the rearrangement of the structure on
timescales longer than minutes. In this paper, we are motivated by the time-evolving
rheology of the cell cytoplasm and how its material properties affect cell locomotion
in confined environments.
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The cellular cytoplasm is a mixture of organelles, the cytosol, and the cytoskeleton.
The cytosol is the liquid portion of the cytoplasm and it consists of water, ions, and
dissolved molecules. The cytoskeleton is a dynamic network of filamentous proteins,
including actin filaments, microtubules, and intermediate filaments, that give the cell
its shape and ability to move. However, the cytoskeletal network is not a simple
linear, elastic solid; it can exhibit highly non-linear elasticity and dynamics driven
by adenosine triphosphate (ATP)-dependent processes [8]. The cytoplasm has been
modelled on the continuum level as an elastic material, viscoelastic material, porous
gel, and viscous fluid [7, 10–12]. The appropriate mechanical model to describe
this complex active bio-structure depends on the timescale and relevant cellular
processes under consideration. Notably, the actin filaments involved in cell locomotion
polymerise, depolymerise, and reorganise on a timescale of minutes. Therefore, the
actin network behaves like an elastic solid on timescales of seconds, but a viscous fluid
on timescales longer than minutes. On intermediate timescales, the network behaves
like a elastic material that exhibits stress relaxation.

Motivated by the rearrangement of the cytoskeletal network, the contribution of
this work is to incorporate a model for stress relaxation in our existing framework
for simulating porous elastic structures immersed in a viscous fluid. The modelling
framework in Strychalski et al. [5] is an extension of the immersed boundary method
for simulating poroelastic media immersed in incompressible viscous fluid; the fluid
dynamics equations are solved on a fixed Eulerian grid, while the structure forces are
solved on a moving Lagrangian framework and transfer operators are used for the
communication between grids [1]. The method for computing elastic forces on the
material is reviewed and extended to include stress relaxation of the material. Once
these material forces are accounted for, one can solve the equations of fluid motion in
different ways. Rather than employ the framework of the immersed boundary method,
here we use the grid-free method of regularised Stokeslets [13], that constructs the
flow field due to a distribution of regularised forces.

There are other methods for modelling moving and deforming viscoelastic
materials, such as the mixed Eulerian/Lagrangian methods which involve mapping
elastic quantities between coordinate systems repeatedly [14, 15]. Alternately, Wróbel
et al. [16] built a network out of cross-linked discrete viscoelastic elements and
the corresponding elastic forces are computed on the Lagrangian coordinate system
moving with the network. Similarly, we have developed a method for viscoelastic
materials in which stress relaxation is imposed on a Lagrangian frame, but unlike
the work in [16] we use a continuum-like approach. Rather than an expression for the
time-evolution of the stress tensor, viscoelasticity is satisfied through a simple ordinary
differential equation for how the reference configuration of the material relaxes over
time to the current configuration, which is derived from a continuum expression for
how strain relaxes in times. We perform two rheological tests to reveal the mechanical
response of such a material and show that in the limit of small strain, our formulation
agrees with the linearised Maxwell model [17, 18]. Finally, the method is applied
to cell locomotion through a microfluidic channel, where we demonstrate that the



[3] A porous viscoelastic model for the cell cytoskeleton 3

Ω

X(s,t)

s X(s)
A = ∂X/∂s

(a)

(b)

FIGURE 1. Computational domain and its discretisation. (a) Ω indicates the Eulerian domain with
coordinate x. X(s, t) represents the current location of the Lagrangian variables with coordinate s. An
unstructured grid is used to discretise the Lagrangian domain. The fluid variables are evaluated at the
material points, x = X(s, t). (b) The deformation gradient tensor A maps the vertices of the undeformed
(reference) triangle configuration, s, to the deformed triangle configuration, X.

properties of the cytoplasm are important to capture the relevant biological behaviour.

2. Mathematical framework

2.1. Formulation of poroelasticity To describe the mechanics of porous
viscoelastic materials, we start with the two-phase flow model, which is often used
to describe multicomponent mixtures that consist of an elastic network immersed in
an incompressible, viscous fluid [19]. Because the aim of this work is to simulate
the cytoskeleton, and the volume fraction of the cytoskeletal network is small in
comparison to the fluid phase [20], we consider the case of negligible volume fraction
of the elastic network. It was shown in Strychalski et al. [5] that the formulation
used here matches the standard model of poroelastic media given by Biot [21] in
the limit of vanishing network volume fraction. Here, we revisit the poroelasticity
immersed boundary framework, and consider how to introduce stress relaxation within
this method in order to capture the viscous behaviour of the cytoskeleton on longer
timescale due to the reorganisation of the actin filaments.

We consider a viscous incompressible fluid in a domain Ω containing an immersed
structure, Γ. A natural way of representing the time evolution of a deforming elastic
structure is with a moving Lagrangian coordinate system. The configuration of
the structure is denoted by X(s, t), where s is a reference Lagrangian coordinate
(Fig. 1(a)). We use the convention that capitalised letters represent material variables
and lower case letters indicate fluid variables. We evaluate the fluid variables at the
material points x = X(s, t) that define the spatial configuration of the material. In our
formulation, there are separate force balance equations for the viscous fluid and for the
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internal elastic stresses on the structure. Each structure moves with its own velocity
field and the two materials are coupled through drag forces. The force balance on
the fluid includes internal fluid forces (viscosity, pressure) and drag force due to the
relative motion of the immersed structure, which leads to the forced incompressible
Stokes equations:

µ∆u − ∇p + fdrag = 0 (1)
∇ · u = 0 , (2)

where u represents the fluid velocity, p is the pressure, µ is the dynamic viscosity of
the fluid. fdrag represents the drag force density on the fluid due to the relative motion
of the structure and it is given by

fdrag = ξ(U − u) , (3)

where U denotes the material velocity. The force density balance on the immersed
structure is

Fdrag + Felastic = 0 , (4)

where Felastic denotes the elastic force density in the structure, and the drag force
density on the structure is equal and opposite to the drag force density on the fluid,

Fdrag(s, t) = − fdrag(x, t) . (5)

where the fluid variables are evaluated at the material points x = X(s, t). Combining
Eqs. (3)-(5) and isolating the variable for the velocity of the structure, the structure
moves as follows,

∂X
∂t

= U =
1
ξ

Felastic + u . (6)

Given a set of elastic forces, the evolution of the elastic network specified in Eq. (6) in
conjunction with the viscous flow equations in Eqs. (1)-(2) are sufficient to determine
the dynamics of the fluid-structure system.

At this point, a constitutive law must be specified to compute the elastic forces
of the material in Eq. (6). A general framework for describing elastic structures is
by directly computing the force from energy functionals and without the direct use
of stress tensors. Here, we consider hyperelastic materials, which are characterised
by a strain energy density W = W(A) where A = ∂X/∂s is the network deformation
gradient tensor [17]. For such materials, the Lagrangian elastic force density is given
by the variational derivative of the energy:

Felastic = −
δE
δX

, (7)

where E is the total energy of the system,

E =

∫
Γ

W(A) ds . (8)
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The material properties of the hyperelastic solid are specified by a constitutive law for
the strain energy density. For example, the strain energy density of a two-dimensional
(2D) neo-Hookean elastic material is

W(A) =
G
2

( tr(AAT )
J2 − 2

)
+

K
2

(J − 1)2 , (9)

where G denotes the elastic shear modulus, K is the elastic bulk modulus, and
J = detA is the determinant of the deformation gradient tensor [17].

2.1.1. Discretisation of the model Given the reference configuration of a material,
the structure is discretised into a triangular mesh. Further, we assume that the
deformation map X(s, t) is piecewise linear on each triangle T. For a given triangular
element T, the positions of the k-th vertex of T in reference configuration are denoted
by s(k) whereas in the deformed configuration they are X(k). The set of vectors that
describe the deformed and undeformed triangular elastic sheets are X̃(i) = X(i) − X(0)

and respectively, s̃(i) = s(i) − s(0) for i = 1, 2. Since a linear deformation was assumed
on a triangle, the deformed triangular element is given by the following mapping,(

X̃(1) X̃(2)
)

=A
(̃
s(1) s̃(2)

)
, (10)

whereA is the deformation gradient tensor (shown in Fig. 1(b)).
For a piecewise linear deformation map, the deformation gradient tensor and the

strain energy density are constant on each triangle. Starting with Eq. (7) and following
the derivation in [5] and [22], the n-th component of the force (not force density) at
vertex k contributed by triangle T is given by

(
F̂(k)

T

)
n

= −

2∑
i, j=1

Pi j
∂Ai j

∂X(k)
n

dA0(T ) . (11)

Here,
Pi j = ∂W/∂Ai j , (12)

denotes the first Piola-Kirchhoff stress tensor [18]. The area of the triangular element
in reference configuration is denoted by dA0(T ). To find the total force at the k-th
vertex, we sum over the set of all triangles in the triangular mesh that contain vertex
k, Tk. To calculate the force density at each vertex as needed in the structure force
balance in Eq. (4), we divide the force in Eq. (11) by the characteristic area of a node,
dAk, which is taken to be the sum of one third the area of each triangle with vertex Xk:

F(k)
elastic =

∑
T∈Tk

F̂(k)
T

dAk
=

∑
T∈Tk

F̂(k)
T

1
3
∑

T∈Tk
dA0(T )

(13)

Notably, the Lagrangian elastic force density depends on the first Piola-Kirchhoff
stress tensor which is a measure of the forces in the deformed configuration acting
on an element of area in the reference configuration. By choosing a constitutive law
for W(A) or equivalently, P, the type of material is specified.
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2.2. Formulation for viscoelasticity To simulate immersed elastic materials that
exhibit rearrangement of the network, such as the cell cytoskeleton, we extend the
existing framework for simulating poroelastic material [5] to capture stress relaxation
in a moving Lagrangian coordinate system. Specifically, the aim is to introduce
viscoelasticity congruent with the method for computing elastic forces outlined in
Section §2.1.

For simplicity, we first consider a 2D incompressible neo-Hookean material. Then,
the constitutive law in Eq. (9) reduces to the following expression [17, 18],

σ = GC, (14)

where σ is the Cauchy stress tensor and C is the Finger deformation tensor which
describes the change in shape of a small material element [18]:

C =AAT . (15)

Alternatively, one can show that the constitutive law for an incompressible neo-
Hookean material can be written as,σ = GC

O
C= ∂C

∂t + U · ∇C − ∇U ·C −C · ∇UT = 0 ,
(16)

where
O
C is called the upper-convected derivative [17, 18]. Here, the Finger tensor is

a measure of the strain. Now, we introduce the relaxation of the strain to the identity
matrix with a relaxation timescale, λT :

λT
O
C = I −C , (17)

Together, Eqs. (14) and (17) can also be written as a relaxation of the Cauchy stress
tensor:

λT
O
σ +σ = G I . (18)

This expression is commonly identified as the upper-convected Maxwell model and it
is one of the simplest non-linear models for stress relaxation which is analogous to the
Maxwell element, a spring and dashpot in series [17, 18].

This formulation of viscoelasticity poses a few implementation difficulties for
our immersed poroelastic framework. First, while elastic forces are computed in a
moving, deforming frame in Section §2.1, the upper-convected Maxwell model would
require computing a corresponding Cauchy stress tensor, and updating the Cauchy
stress tensor in an Eulerian reference frame. One way to resolve this issue would be
a change of coordinate system every time step [14, 15]. Furthermore, for the case
of deforming and moving structures as is the case in cell locomotion, solving the
partial differential equation in Eq. (18) throughout the structure every time step poses
computational difficulties. To avoid both of these complications, we propose a simple
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model for viscoelasticity in a moving frame which is analogous to the upper-convected
Maxwell model in Eqs. (14)-(17) (or equivalently, Eq. (18)). In particular, we exploit
the fact that our elasticity formulation in Eq. (11) involves the first Piola-Kirchhoff
stress tensor and develop a model for viscoelasticity expressed for the first Piola-
Kirchhoff stress tensor. This is achieved by following the same derivation as above
to arrive at the upper-convected Maxwell model. The first Piola-Kirchhoff tensor and
the Cauchy stress tensor are related by

P = JσA−T , (19)

which relates quantities defined in areas in a deformed configuration to those relative
to areas in a reference configuration [17, 18]. We express the Cauchy stress in the
above relation in terms of the deformation gradient using Eqs. (14) and (15), and use
that for an incompressible material J = det(A) = 1 to express the constitutive law for
an incompressible neo-Hookean material as

P = GA . (20)

For an elastic material, the deformation gradient satisfies

O
A=

∂A

∂t
+ U · ∇A − ∇U · A = 0. (21)

Eqs. (20) and (21) are equivalent to Eq. (16). We note that the form of the upper-
convected derivative of the deformation gradient, A, is slightly different than that
of the Finger tensor, C [18]. One can realise their equivalence by applying the
derivative defined in Eq. (21) to C =AAT . The upper-convected Maxwell model
results from introducing strain relaxation in a neo-Hookean material (i.e. as in
Eq. (17)). Analogously, we modify the elastic model from Eqs. (20)–(21) to describe
a viscoelastic material by assuming that the deformation relaxes as

λT
O
A= I −A . (22)

Although Eq. (22) is chosen to be analogous to Eq. (17), in general, this will not
produce the same material response as the upper-convected Maxwell model. In
Section §3, we will provide both analytical and numerical comparisons of this model
with the Maxwell model for two different rheological tests.

2.2.1. Discretisation of the model Just as before, the structure is discretised into a
triangular mesh with the assumption that deformation map is a linear on each triangle
T and thus, the deformation gradient tensor is constant on each triangular element.
However, instead of solving Eq. (22) on every triangular element, we propose an even
simpler formulation of viscoelasticity by deriving a mathematically equivalent relation
for how the material’s reference configuration, s, relaxes to the current configuration,
X, over time,

A
∂s
∂t

=
1
λT

(X − s) . (23)
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We claim that the above expression is equivalent to the relaxation of the strain in
Eq. (22) provided that A is constant per triangular element. To show this, we start
with the definition of the deformation gradient tensor,

A =
∂X
∂s
, (24)

where now because the reference configuration evolves in time, it is useful to express
the current and reference configuration variables as functions of time and the particle
label, α. Then, by the chain rule,

Ai j =
∂Xi

∂αk

∂αk

∂s j
, (25)

where X = X(t, α) and similarly, s = s(t, α). A rearrangement of the above equation
yields,

A
∂s
∂α

=
∂X
∂α

. (26)

which can now be differentiated in time to obtain

∂A

∂t
∂s
∂α

+A
∂

∂α

(∂s
∂t

)
=
∂U
∂α

, (27)

where U = ∂X/∂t. At this point, for the partial time derivative of s we assume that the
reference configuration relaxes as in Eq. (23), and obtain the following equation,

∂A

∂t
∂s
∂α
−
∂U
∂α

= −A
∂

∂α

(∂s
∂t

)
= −

1
λT
A

∂

∂α

(
A−1(X − s)

)
= −

1
λT

∂

∂α

(
X − s

)
, (28)

which holds under the assumption that the deformation gradient tensor is constant per
triangle. In the above equations, all quantities are expressed as functions of α. To
change coordinates and express quantities as functions of s, we use that

∂

∂αi
=
∂s j

∂αi

∂

∂s j
(29)

to obtain

DA
Dt
−
∂U
∂s

= −
1
λT

∂

∂s

(
X − s

)
= −

1
λT

(∂X
∂s
− I

)
=

1
λT

(
I −A

)
, (30)

where DA/Dt = ∂A/∂t + U · ∇sA is the material derivative. Lastly, a transformation
to the Eulerian coordinate system yields,

DA
Dt
−
∂U
∂X
A =

1
λT

(
I −A

)
, (31)

using the following change of coordinates,

∂U
∂s

=
∂U
∂X

∂X
∂s

=
∂U
∂X
A , (32)
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where now, DA/Dt = ∂A/∂t + U · ∇A. Indeed, we find that the expression for the
convective derivative of the deformation gradient tensor in Eq. (22) is recovered in
Eq. (31).

In this framework, we model the stress relaxation of a material through only
the ordinary differential equation for the reference configuration and the stress-strain
relation is given by specifying a constitutive law for the first Piola-Kirchhoff stress
tensor. This rearrangement has the advantage that viscoelasticity is imposed in a
computationally inexpensive way and does not depend on the constitutive law or the
mesh discretisation of the material. Thus, the equations of motion for the immersed
porous viscoelastic structure and the incompressible viscous fluid are:

µ∆u − ∇p + fdrag = 0 (33)
∇ · u = 0 (34)

Felastic + Fdrag = 0 (35)

A
∂s
∂t

=
1
λT

(X − s) , (36)

where the drag force density on the fluid due to the network is:

fdrag = −Fdrag = ξ(U − u) . (37)

The elastic force density on the structure, Felastic, is computed through a variational
derivative of the energy as described in Eqs. (11)-(13). Combining Eqs. (35) and (37),
we find that the drag force density on the fluid is equal to the elastic force density on
the structure, fdrag = −Fdrag = Felastic and replacing in Eq. (33) yields

µ∆u − ∇p + Felastic = 0 . (38)

Given the configuration of the material, Eqs. (38) and (34) determine the fluid velocity
and pressure, and Eq. (6) determines the structure velocity. The structure’s position
and rest configuration evolve in time according to Eq. (6) and Eq. (36), respectively.

3. Rheological validations

In this section, we validate the framework for simulating porous, viscoelastic
materials permeated by viscous fluid by comparing with continuum equations for
a viscoelastic structure. Specifically, we carry out rheological measurements of a
material with a viscoelastic response in the limit of small deformations in order
to compare with analytical expressions for the stress tensor. Here, we present
two rheological tests used to characterise viscoelastic properties: a small amplitude
oscillatory shear test and a dynamic expansion test. In the small amplitude oscillatory
shear test, a periodic deformation is imposed on the material and the resulting
deformation gradient tensor and stress are measured. In the expansion test, the material
is stretched uniformly in the radial direction and the velocity profile throughout time
and space is obtained and compared with the linearised Maxwell model in the limit of
small strain.
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U = γ y cos(2̟ωt)

L

L

FIGURE 2. Schematic for oscillatory linear shear test. A square viscoelastic material undergoes a
prescribed oscillatory motion in the horizontal direction as given by Eq. (40) with amplitude γ and
frequency ω. The initial material configuration is shown in grey while the later in time configuration
is in blue (online). We note that the deformation is not drawn to scale.

3.1. Small amplitude oscillatory shear test We consider a test problem with a
prescribed deformation through time and we measured the strain response of the
material. For this problem, a periodic linear shear is imposed on a square viscoelastic
structure with side of length L (Fig. 2). The prescribed network velocity is

U = (U(y), 0) = (γy cos(2πωt), 0) , (39)

Since the current position and velocity are related by ∂X/∂t = U, the position of the
structure at a given time is

X = (γy sin(2πωt)/(2πω), 0) . (40)

In this section, we will use this rheological test to provide two insights about the
framework described in Section §2.2: first, a numerical validation that the differential
equation for the reference configuration in Eq. (36), is indeed equivalent to the
relaxation of the deformation gradient tensor in Eq. (22), and secondly, a comparison
of our model for viscoelasticity and the linearised Maxwell model in the limit of small
deformation (or strain).

3.1.1. Numerical validation First, to validate the stress relaxation response of the
poro-viscoelastic formulation, we compare the deformation gradient tensor that is
obtained by solving Eq. (22), to a 2D prescribed motion simulation, where stress
relaxation is imposed by the simple update expression for the reference configuration
in Eq. (36). For the oscillatory linear shear motion in Eq. (39), with the convention that
the gradient of the vector is ∇U = ∂Ui/∂X j, the gradient of the velocity of the structure
is

∇U =

(
0 γ cos(2πωt)
0 0

)
. (41)
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We note that the gradient of the structure velocity is constant in space for this
prescribed motion test. Then, the time-evolution for strain in Eq. (22) is written
component-wise as,

λT

(A11

∂t
− γ cos(2πωt)A21

)
+A11 = 1, (42)

λT

(A12

∂t
− γ cos(2πωt)A22

)
+A12 = 0, (43)

λT
A21

∂t
+A21 = 0, (44)

λT
A22

∂t
+A22 = 1. (45)

Initially, because there is no deformation of the material, the deformation gradient
tensor is A(0) = I. With this initial condition, the full analytical solution to the
components of the deformation gradient tensor are

A11(t) = 1, (46)

A12(t) =
γλT

4π2ω2λ2
T + 1

(
− e−t/λT + cos(2πωt)

)
+

2πωγλ2
T sin(2πωt)

4π2ω2λ2
T + 1

, (47)

A21(t) = 0, (48)
A22(t) = 1 . (49)

For this test, we set ξ = 0.1, λT = 0.5, G = 0.5, L = 1.0, and t ∈ [0, 5] in arbitrary
units. For the prescribed motion in Eq. (39), we set γ = 0.5 and ω = 1.0. In this
scenario, the motion of the structure is prescribed, and the reference configuration
of the material is obtained using Eq. (36) updated with the forward-Euler method
for time integration. Because only the 12-component of the deformation gradient
tensor is non-constant, the convergence of only this component is discussed here.
Fig. 3(a) shows the difference between the analytically computed deformation gradient
and the resulting deformation gradient from the simulation normalised by maximum
deformation gradient tensor over time. Since for this test problem ∇U is constant
in space, there is no spatial error for this rheological test. Here, the temporal
discretisation chosen is ∆t = 10−7 in arbitrary time units. In Fig. 3(b) we show the
error at t = 2.2 (chosen near one of the peaks in Fig. 3(a)) for different time steps. The
model shows a first-order convergence in time when compared to the line of slope 1 in
the plot.

3.1.2. Comparison with linear viscoelasticity Next, the same deformation of an
oscillatory linear shear is considered, but in the limit of small amplitude deformations,
γ� 1. To demonstrate that our method agrees with known models for linear
viscoelasticity, we compare the Cauchy stress tensor obtained by solving the linearised
Maxwell model in Eq. (18) to a 2D prescribed motion simulation as in Eqs. (33)-(36).
This comparison is presented analytically below and also numerically in Fig. 4.



12 C. A. Copos and R. D. Guy [12]

10
−8

10
−6

10
−4

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

0 1 2 3 4 5
−1

−0.5

0

0.5

1
x 10

−7

slope 1

Time step ∆t

(a)

0 1 2 3 4 5
−1

−0.5

0

0.5

1
x 10

−7

Time

E
rr

or

E
rr

or

(b)

FIGURE 3. Relative error in the deformation gradient tensor for an oscillatory linear shear test. (a) Shown
here is a plot of the difference between the analytically computed deformation gradient tensor and the
resulting deformation gradient tensor normalised by its maximum over time for an oscillatory linear
shear test. (b) The difference between the analytical solution of the deformation gradient tensor and the
deformation gradient tensor obtained from the 2D prescribed motion simulation is scaled by its maximum
at t = 2.2 and plotted for different choices of time step.
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FIGURE 4. Comparison of a full 2D prescribed motion simulation with linear viscoelasticity for a small
amplitude oscillatory shear test. Shown here are the relative differences in the stress components between
the analytically computed stress for linearised Maxwell model and the computed stress in the prescribed
motion simulation; both stress measurements are normalised by the maximum stress over time.
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In the 2D prescribed motion simulation, the Cauchy stress tensor is given by
the stress-strain relation, σ = GAAT . Using the analytical form of the deformation
gradient tensor for oscillatory shear derived in Eqs. (46)-(49), we arrive at the
following full expression for the Cauchy stress tensor in the porous, viscoelastic
method proposed in this work:

σ(t) =

(
G + GA2

12 GA12
GA12 G

)
, (50)

where the functional form ofA12 =A12(t) is provided in Eq. (47). In particular, in the
limit of infinitesimal strain, the quadratic term in the 11-component of the Cauchy
stress tensor is negligible. To find the solution to the linearised Maxwell model
in Eq. (18) in the limit of small strain, first we linearise the expression about the
equilibrium, σ = τ + GI, to arrive at the following expression,

λT
∂τ

∂t
+ τ = 2λT GD , (51)

where D = 1/2(∇U + ∇UT ) is the rate-of-deformation tensor. With the deformation in
Eq. (39), the solution is given by,

τ =

(
0 τ12
τ12 0

)
,

where τ12 satisfies the equation,

λT

(∂τ12

∂t
−Gγ cos(2πωt)

)
+ τ12 = 0 . (52)

We note that this equation is identical to the equation for A12 in Eq. (43) since
A22(t) = 1 and provided that τ12 = GA12. Therefore, the Cauchy stress tensor for the
linearised Maxwell model in the case of small amplitude oscillatory shear has the form:

σ =

(
G GA12

GA12 G

)
+ O(γ2) , (53)

since A12(t) ∝ γ. Up to quadratic terms in the amplitude of the oscillation, Eqs. (53)
and (50) match; our method for stress relaxation is in good agreement with the
linearised Maxwell model in the limit of small strain.

Next, we also provide numerical validation for this agreement. Using the same
parameters as in the previous section but with γ = 10−3, the relative difference in
each component of the Cauchy stress tensor between the full 2D prescribed motion
simulation and the linearised equation for the Maxwell material are shown in Fig. 4.
We observe that the relative difference in the first component of the Cauchy stress
tensor is slightly lower that the magnitude of the amplitude squared, O(10−8) < O(γ2),
which is in good agreement with our claim that the methods match up to quadratic
terms in strain.
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FIGURE 5. Schematic for linear expansion test. A viscoelastic unit circular material undergoes an
expansion in the radial direction driven by a prescribed motion at the boundary. The initial material
configuration is shown in grey while the later configuration at time t = 0.1 is in blue. The arrows indicate
the velocity at the boundary that drives the expansion of the material. We note that the deformation is not
drawn to scale; in our simulations the relative deformation is 10−3.

3.2. Linear expansion test Since the deformation was prescribed in the previous
rheological test, we now consider a dynamical test in which a radially symmetric
material is expanded uniformly. The motion of the boundary of a circular viscoelastic
structure of radius R is prescribed to move in the outward normal direction with
velocity as shown in Fig. 5. In this case, the fluid velocity is zero, and the motion
of the interior of the material is found by solving the system in Eqs. (33)-(35),

∇ · σ − ξ U = 0 . (54)

For tractability of an analytical solution, we consider a simple model of a compressible
material,

σ = GAAT , (55)

where now, G denotes an elastic modulus. We will use this rheological test to evaluate
the material response over time due to a perturbation at the boundary and compare the
response with the linearised Maxwell model.

3.2.1. Numerical validation We compare the velocity U(r, t) that is obtained from a
full 2D immersed structure simulation where viscoelasticity is modelled by the simple
differential equation in Eq. (36), to an analytical solution of the linearised Maxwell
model (as in Eq. (18)). Specifically, we linearise the upper-convected Maxwell model
and the force balance in Eq. (54) and find a series solution to the radial velocity,
U(r, t) = (Ur, Uθ) = (Ur, 0), in Appendix ??. Here, Ur = U · er and Uθ = U · eθ = 0
correspond to the radial and angular components of the velocity. Since in this test
problem, the material experiences a prescribed velocity in the radial direction on the
boundary, we take the following boundary condition,

Ur(R, t) = U0 , (56)
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for some velocity U0. We also assume that initially, the network undergoes no
deformation: Ur(r, 0) = 0. For this section, we set ξ = 0.5, λT = 0.05, G = 1.0, R =

1.0, and t ∈ [0, 0.1] in arbitrary units. The radial velocity at the boundary is set to be
U0 = 10−2, which corresponds to a uniform expansion of the disk 0.1% in the radial
direction. The series solution is truncated after 10 terms with a truncation error less
than O(10−16). For a poroelastic material, non-dimensionalisation can be used to show
that stress propagates effectively diffusively through the material with a characteristic
timescale of R2ξ/G [7, 23]. For these parameters, the poroelasticity diffusion timescale
for propagation of the deformation is approximately 0.5 arbitrary time units, while the
stress relaxation timescale is 0.05 arbitrary time units. The radial velocity through
the material at several time points is shown in Fig. 6(a). We observe that the material
exhibits a fast equilibration within two relaxation time units.

For the numerical simulations, the Lagrangian domain is a unit disk that is
discretised using Distmesh [24] with a uniform mesh size. The algorithm was used
to generate an unstructured grid with 256 Lagrangian points with an averaged spatial
discretisation of ∆s ≈ 0.118686. Internal elastic forces are computed based on the
material’s configuration. Specifically, for the computation of elastic force densities, we
use the following constitutive law for the material, P = JGA, which is equivalent to
the constitutive law for the Cauchy stress tensor in Eq. (55). The fluid velocity is zero
because of incompressibility, and the material’s position and reference configuration
are updated in time using the forward-Euler method to integrate Eq. (6) and (36),
respectively, with time step ∆t = 10−5.

In order to compare the numerical solution of the immersed structure simulation to
the truncated series solution of Eqs. (18) and (54), we evaluate the series solution at the
points on the Lagrangian grid. Convergence data is presented in Fig. 6(b) which shows
L∞ and L2 norms of the difference between the truncated series velocity in the radial
direction and the velocity resulting from the simulation at t = 0.1 for different grid
refinements. Similar to the previous test, the model also shows first order convergence
in both norms when compared to the line of slope 1 in the plot.

3.2.2. The effect of the relaxation timescale By varying the relaxation timescale in
the system, the material response in this modelling framework can be dominated by
either the elastic or viscous timescales as illustrated in Fig. 7. In both simulations all
parameters are kept fixed and in particular the diffusion timescale for the material is 0.5
arbitrary time units. In the first simulation, the relaxation timescale is λT = 0.05, while
in the second simulation the relaxation timescale is much longer, λT = 2.0. For a small
relaxation timescale, the stress imposed by the deformation is gradually forgotten over
time since the memory of the stress has a time constant of λT = 0.05 arbitrary time
units. This implies that over this characteristic timescale, the strain due to the initial
deformation decays on the timescale of the problem. In the case of a large relaxation
timescale, we conjecture that the material response should be well-described by an
elastic solid. In Fig. 7, we see that by 0.1 arbitrary time units, the velocity profile
is nearly linear across the material, which indicates that the initial deformation has
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FIGURE 6. Relative error in the velocity profile of the immersed structure for a linear expansion test. (a)
Given here is the velocity Ur(r, t) in the radial direction at several time points divided by the maximum
velocity Umax = 1.0 × 10−2. (b) The 2-norm and max-norm of the difference between the truncated series
solution of the velocity field and numerical solution scaled by the maximum velocity at t = 0.1 is plotted
for different grid sizes.

propagated across the material. This is because the memory of the deformation is kept
for a much longer timescale than the time of the simulation since, λT is chosen to
be 2.0 time units. A linear velocity profile is indeed what is expected in the case of
elastic solid as seen by considering the limit λT →∞ of the steady state solution of the
velocity profile in Appendix ??. By varying the relaxation timescale, the rheological
properties of the material can be tuned to be either more elastic or viscous.

4. An application: Simulation of a cell in a microfluidic channel

In this section, the porous, viscoelastic framework described above is applied to
study the effect of the cytoplasm rheology on the locomotion through a channel as
illustrated in Fig. 8. Although microfluidic channels with chemical gradients have
also been used to study directional chemotaxis [25], here we consider the passive
locomotion of cells due to an extracellular fluid flow in the absence of chemotaxis and
cell-surface adhesion. In this experimental setup, cells are driven through a confined
environment in which rheology of the cytoplasm becomes an important factor in
determining the escape time across this microenvironment. With this goal in mind,
we compare two mechanical models of the cytoskeleton: poroelastic material and
poro-viscoelastic material. Depending on the pressure gradient, the transient time
is expected to be on the order of seconds to a few minutes and on this intermediate
timescale, the rheological properties of the cytoskeleton have been measured [8]
and are known to be well-described by a viscoelastic material [10–12]. Using this
experimental setup, we demonstrate that the time for the cell to travel the length of
the microfluidic channel is much longer with a poroelastic cytoskeleton than with a
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Umax = 1.0 × 10−2. The time-space evolution of the scaled radial velocity is illustrated for the case of
(a) small relaxation timescale, λT = 0.05, and (b) relaxation timescale much longer than observable time,
λT = 2.

porous viscoelastic cytoskeleton where stress relaxation of the material has the effect
of lowering the internal strain energy.

4.1. Model of the cell

Poroelastic cytoplasm model The cell moves in the horizontal direction due to fluid
flow from a prescribed pressure drop in a microfluidic channel as illustrated in Fig. 8.
Our model of the cell has two subcellular components: a combined membrane-cortex
structure and the cytoplasm. The cell cytoplasm is represented as a two-phase material:
a viscous fluid phase (the cytosol) and a viscoelastic network (the cytoskeleton)
with position Xcyto. The cell membrane and its underlying actomyosin cortex are
represented as one structure and is modelled as an impermeable contractile elastic
structure that moves with the fluid velocity. The position of the membrane/cortex
structure is denoted by Xmem(s, t), where s is the local parametric coordinate on the
structure and τ̂ is the tangent vector to this curve. The membrane/cortex structure
lies on the boundary of the cytoskeletal network and thus, in the discretisation of
the method, the cytoskeleton and the membrane/cortex share discretisation points.
This modeling choice is equivalent to requiring that the boundary of the cytoskeletal
network and membrane/cortex structure are connected by rigid attachments on a
lengthscale well below the mesh spacing. The force balance equation for the fluid
phase includes the membrane/cortex structure, the cytoskeletal drag, as well as a
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FIGURE 8. Schematic of the computational setup with a side view of a cell in a microfluidic channel. The
fluid flow is driven by a prescribed pressure differential across the channel. The width of the channel
in the narrowest section, w, is chosen to be 75% of the initial cell diameter. The arrows indicate the
characteristic Poiseuille velocity field imposed at the endpoints of the channel. Our model of the cell
has three subcellular components: a combined membrane-cortex structure, a viscous cytosol, and a
cytoskeletal network.

repulsive interaction with the top and bottom channel walls,

µ∆u − ∇p + f cyto
drag + f mem

elastic + f mem
repulsive = 0 (57)
∇ · u = 0 , (58)

where f cyto
drag is the drag force density on the fluid due to the relative motion of the

structure. For the force densities, we use the convention that the subscript describes
the type of force and the superscript describes the structure acted upon by the force.
f mem
elastic is the elastic force density on the membrane/cortex structure and it is computed

by

f mem
elastic =

∂

∂s
(T τ̂) . (59)

The tension T is given by

T = γ + k
(∣∣∣∣∂Xmem

∂s

∣∣∣∣ − 1
)
, (60)

which describes a linearly elastic spring with stiffness k and resting tension γ.
To capture non-specific, small lengthscale cell-surface interaction, when the cell
membrane is within a distance δw of the channel wall, it experiences a repulsive force
of the form

f mem
repulsive =

{
−krepulsive(δw − d) n̂ , d < δw

0 , d ≥ δw .
(61)

Here, d denotes the distance from the top and bottom channel walls to the cell, krepulsive
represents the stiffness of this repulsive interaction, and n̂ is a unit vector in the outward
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normal direction. On the cytoskeletal network, the force density balance equation has
the form,

Fcyto
drag + Fcyto

elastic = 0 . (62)

Here, the cytoskeletal drag is defined as Fcyto
drag = − f cyto

drag = ξ(u − U). The elasticity of the
cytoskeletal network is computed as described in Section §2.1 with the strain energy
density for a compressible, neo-Hookean material provided in Eq. (9).

Given a configuration of the membrane/cortex structure and the cytoskeleton,
forces at every location on the structures are computed, and then the pressure and
velocity of the fluid, along with velocity of the membrane/cortex and cytoskeleton are
obtained by solving Eqs. (57)-(58) and Eq. (62). The positions of each structure are
updated according to their own respective velocities,

dX
dt

mem

= u (63)

dX
dt

cyto

=
1
ξ

Fcyto
elastic + u . (64)

Poro-viscoelastic cytoplasm model The model formulation for a porous, viscoelastic
cytoskeletal network is the same as above with the addition of stress relaxation of the
material phase. Here, stress relaxation is imposed through the time-evolution equation
for the reference configuration of the material as derived in Section §2.2. This implies
that in addition to moving each structure according to their respective velocity fields
as provided in Eqs. (63)-(64), the reference configuration of the each structure must
also updated using Eq. (36).

4.2. Stokes fluid solver The method of regularised Stokeslets is used to solve the
Stokes fluid equations given the forces of the immersed structure. In order to drive
the cell through the confined microenvironment, a pressure difference is imposed
horizontally across the microfluidic channel while the top and bottom channel walls
satisfy a no-slip boundary condition (Fig. 8). For the inlet and outlet flow, we prescribe
a Poiseuille flow profile with an unknown maximum speed, umax,

uinlet/outlet =
(
umax

(
1 −

y2

R2

)
, 0

)
= umax vinlet/outlet , (65)

where R represents half the vertical separation between the channel walls. The other
unknowns of this system are the forces at the vertical channel walls, finlet/outlet, which
produce a parabolic flow profile, along with the forces along the top and bottom
walls, fwalls, where the no-slip boundary condition is enforced. Then, algebraically,
the system has the following form:(

M C

S Π 0

) (
f

umax

)
=

(
0

∆P

)
, (66)
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where

f =

(
fwalls

finlet/outlet

)
, C =

(
0

−vinlet/outlet

)
. (67)

Here, M denotes the regularised Stokeslet velocity matrix which maps regularised
forces to flow velocities while Π represents the regularised Stokeslet pressure matrix
which maps regularised forces to pressure. S is the discretisation of the operator which
acts on a pressure field, p, as follows,

S p =
1

2R

∫ R

−R

(
poutlet − pinlet

)
dy. (68)

For a given channel geometry and pressure difference across the channel, ∆P, the
system of equations is solved for the unknown forces and flow constant, umax.

4.3. Discretisation of the model To simulate the dynamics of a cell driven by
an external pressure drop, the cytoskeletal network is spatially discretised using
62 points and every discrete point has its own current and reference position and
velocity field. The averaged spatial discretisation is ∆s = 2.0 µm. The boundary
points on the network form the membrane/cortex structure. Every time instance, local
forces are computed at every discretised point along the cytoskeletal network and the
membrane/cortex structure and their position is updated according to their respective
update equations (Eqs. (63)-(64)). A finite difference scheme is used to evaluate
spatial derivatives in the force computations. Eqs. (63)-(64) are time integrated for
the positions of the cytoskeletal network and membrane/cortex structure and Eq. (36)
for the reference configuration of the cytoskeletal network using the Runge-Kutta-
Fehlberg method, order 4/5 with a variable time step. In these simulations, the cell
membrane can be very close to the channel wall. The high time accuracy with error
control makes it less likely for the membrane to cross the channel wall due to time
integration error. Given the parameters in Table 1 and a relative tolerance of 10−3 for
the Runge-Kutta method, the resulting temporal discretisation has an average time step
of ∆t = 5.53 × 10−4 minutes. Model parameters are discussed below and provided in
Table 1.

Model parameters. We perform simulations using the parameter values listed in
Table 1. The cytoskeletal relaxation timescale, λT , is the only parameter varied
to produce the different cytoskeleton material models in Fig. 9. Where possible,
parameter values are chosen to be roughly the same order of magnitude as measured
or estimated values in literature. The viscous drag coefficient is given by the ratio of
the dynamic viscosity of the fluid and the cytoplasmic permeability, ξ = µ/κ.

4.4. The effects of the cell cytoplasm rheology for confined fluid-driven
locomotion As the cell is driven by fluid flow through the microfluidic channel,
the cell position is tracked over time and the time to travel the length of the tube is
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FIGURE 9. Transit time through a microfluidic channel for a cell with different rheological descriptions of
the cytoskeleton. The location of the rear of the cell is plotted as a function of time for the two cytoplasm
models: poroelastic (solid, grey line) and poro-viscoelastic material with various relaxation timescales.
The dashed, black line indicates the end of the narrow portion of the channel at 51 µm. The subplots
represent snapshots of the cell’s position in the microfluidic channel and its corresponding strain energy
density throughout the structure for different cytoskeleton models, at different times but at the same
location in the channel. Positive strain energy density indicates a compression of the material, while a
negative strain energy density indicates expansion. The thickness of the gap between the cell membrane
and the channel walls determines the resistance to movement of the cell through the channel due to a
prescribed pressure gradient. For the poroelastic cytoskeleton, the outward elastic forces push the cell
toward the channel walls resulting in a small gap size (panel c). In the case of the porous viscoelastic
cytoskeleton, the restoring forces decay in time forming a larger gap size (panel a) which offers less shear
effective friction as the cell moves through the channel.

recorded for the different cytoskeleton material models (Fig. 9). Given the current
and reference configuration of the structure, the strain energy density of the material
is also computed every time step by the constitutive relation for a compressible neo-
Hookean material in Eq. (9). We note that the cells are not adhering to the surface of
the channel but instead interact with the surface of the channel through steric forces
and are solely driven by extracellular fluid flow arising from the prescribed pressure
difference. For the different simulations all parameters were kept constant except for
the relaxation modulus for the actin cytoskeleton, λT , which was varied to be either 2,
5 or 17 minutes. If we consider a cell speed of 10 µm/min (varies due to the cell type
and flow conditions) and a channel length of 51 µm, the time to traverse the channel
is 5 minutes. The different values for the relaxation timescale were chosen relative to
the travel time for a characteristic cell speed of 10 µm/min.

In the case of the poroelastic cytoskeleton (solid, grey line in Fig. 9), as the cell
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Symbol Quantity Value
R0 Resting radius 8.0 µm
γ Resting tension for membrane-cortex link 400 pN/µm
k Elastic stiffness for membrane-cortex link 1600 pN/µm
G Cytoskeletal shear modulus 142.5 Pa
K Cytoskeletal bulk modulus 285 Pa
λT Cytoskeletal relaxation timescale 2 - 17 mins
µ Cytosolic fluid viscosity 0.5 Pa·s
κ Cytoplasmic permeability 0.0067 µm2

∆P Prescribed pressure drop 190 Pa
2R Vertical separation between horizontal walls of channel 44 µm
w Width of the narrow channel 12.6 µm

krepulsive Constant for cell-surface repulsive interaction 19 kPa
δw Cell-to-wall separation distance 0.05 µm

TABLE 1. Definition and values of parameters for a cell passing through a microfluidic channel simulation.

travels through the channel it gets constricted and deformed, and consequently its
strain energy density increases due to the deformation as shown in Fig. 9(c). As
the cell passes through the channel, the cell speed is partially determined by the gap
between the channel and the cell membrane. The thickness of the gap is the result
of a balance between pressure and the outward normal forces due to the elasticity
of the cytoskeleton. For the poroelastic cytoskeleton, the elastic forces push in the
outward normal direction creating a smaller space and thus, more resistance to the
forward motion. Thus, the cell moves slowly across the channel and its transit
time is approximately 30 minutes. However, in the case of the porous viscoelastic
cytoskeleton, the restoring elastic force decays in time which allows for larger gaps
between the cell membrane and channel walls, and lowers the frictional resistance to
forward motion. In particular, we observe that as the relaxation timescale decreases,
the transit time through the narrow channel decreases as shown in Fig. 9. For
example, for a relaxation timescales of 2 minutes, which is roughly the timescale
for reorganisation of actin filaments in the cytoskeleton, the transit time is an order
of magnitude smaller than in the case of a poroelastic cytoplasm. We attribute a
faster passage time to a decrease in the material’s elastic resistance against the channel
walls. Indeed, if we compare the cell’s strain energy density at the same location in
the channel but for different cytoskeletal models (Fig. 9(a)-(c)), we find that as the
relaxation timescale decreases so does the strain energy density function across the
cell. This decrease in the strain energy is caused by the material forgetting its original
configuration, and thus the network offers less resistance against the channel walls
and allows for a faster transit time. We find that the rheology of the cytoskeleton
has a substantial effect on the passage time through a microfluidic channel, and thus,
this model provides the appropriate framework to capture the effects of cytoplasmic
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rheology and cytoskeletal reorganisation for confined cell motility. We note that
the interaction between the cell and the channel wall presented in Fig. 9, occurs on
lengthscales that are on or below the mesh spacing. While this interaction is not well
resolved, we have found that with finer resolution, the phenomenon of longer transit
time for the poroelastic cytoskeleton than the porous viscoelastic cytoskeleton is a
generic result of the problem. However, resolving the boundary layer of this cell-
surface interaction and getting the interaction quantitatively right would require either
a higher spatial resolution or a more detailed model of the cell-wall interaction.

5. Conclusions

In this paper, we presented a method for simulating porous viscoelastic material
immersed in viscous fluid. This method is based on the poroelastic IB method [5]
in which the fluid and the structure phase move with their own velocity field and
the two phases are coupled through drag forces. Because the structure and the
fluid mechanics can be decoupled at each time step, fast methods for solving the
equations of the fluid mechanics can be used. Given that the material quantities are
more naturally represented in a Lagrangian framework, we developed a model for
viscoelasticity in a moving frame that in the limit of infinitesimal strain is analogous
to the linearised Maxwell model. However, the viscoelasticity model presented here is
non-linear and valid for large deformations that are common in biological problems.
As shown in Section §3.1, the network with a time-evolution equation for the reference
configuration mechanically, behaved like a linear viscoelastic material for small
deformations. In Section §3.2, we validated that dynamically the network’s response
matched that of a porous viscoelastic material permeated by an incompressible viscous
fluid.

The model of a viscoelastic material in this work is an extension of our poroelastic
immersed boundary method [5], where the material’s elastic forces are computed
using a variational derivative of the energy. The method begins with a continuum
expression for viscoelasticity to derive an ordinary differential equation for the
relaxation of the material’s reference configuration. Hence, the formulation resembles
the mixed Eulerian-Lagrangian methods [14, 15] in that a continuum expression for
viscoelasticity underlies the numerical method. However, instead of transforming
elastic quantities back and forth between the Eulerian and Lagrangian frames, we
exploit the fact that material quantities are naturally represented in a Lagrangian
coordinate system and compute viscoelasticity on a moving, deforming frame. One
advantage of this method over simply using a continuum viscoelastic model, is that
stress relaxation is imposed through a simple ordinary differential equation on the
material. Although only two-dimensional problems are considered in this paper,
extending the method to three-dimensional materials is trivial.

The viscoelastic model presented here is developed from a continuum description,
but another approach is to describe the material as a network composed of discrete
viscoelastic elements as done by Wróbel et al. [16]. However, there are several
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FIGURE 10. Mesh distortion due to motion with large deformations. Since in the limit of small relaxation
timescale, the constitutive law for viscoelasticity describes a viscous fluid, the method does not guarantee
to preserve the mesh spacing as the material deforms. Thus, for large deformations, in the case of moving,
deforming structure, re-meshing algorithms need to be considered.

limitations of spring-based models of elasticity [5]. Specifically, in the spring model
it is not clear what constitutive laws are modelled for the large deformations and
moreover, the mechanical properties of the material depend on the structure of the
mesh. The energy-based elasticity models do not have the limitations of the spring-
based model, and in our tests, the energy-based elasticity method was found to be much
more accurate [5]. Here, we exploit the fact that the first Piola-Kirchhoff stress tensor
appears in the energy-based computation of elasticity and we derive viscoelasticity
for this stress tensor. Another advantage of this formulation is the ability to include
isotropic or anisotropic compressive and extensile (swelling) stresses in the method.
For example, including anisotropic swelling stresses in the method could be used to
simulate the formation of actin-rich protrusions such as filopodia and lamellipodia.
However, in this case, to prevent artefacts in the local material properties of the
network due to mesh distortion, a model for local conservation of actin density will be
necessary. In particular, the method does not guarantee to preserve the mesh spacing
as the material deforms in the case of large strain and small relaxation modulus as
shown in Fig. 10. This is due to the fact that the model for viscoelasticity describes a
fluid rather than solid as in the poroelastic immersed boundary method [5], and in such
cases, re-meshing algorithms will need to be incorporated in the framework [26, 27].

This work was motivated by problems in cell biology, and our results showed that
porous viscoelastic models were essential to describe the dynamics in the system
presented. However, the modelling framework and methods are not limited to
applications in cell biology. Porous structures can be found in many contexts in
biology and engineering, and our models could be adapted to these problems.
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A. Solution to the linearized Maxwell model for a linear expansion

In this appendix, we derive an expression for the network velocity due to a
prescribed deformation for a porous viscoelastic material with a simple constitutive
law,

σ = GAAT , (A.1)

where G denotes an elastic modulus. We consider a dynamical test where the motion
of the outer boundary of a circular viscoelastic structure of radius R is prescribed to
move in the outward normal direction with velocity, U0. In this case, the fluid velocity
is zero, and the system in Eqs. 33-34, simplifies to the single equation,

∇ · σ − ξ U = 0 , (A.2)

where U denotes the network velocity. The upper-convected Maxwell model for the
time-history of the Cauchy stress tensor with relaxation modulus λT , is given by,

λT
∇
σ +σ = GI , (A.3)

where ∇ is the material time derivative of a tensor called the upper convected time
derivative,

∇
σ=

∂σ

∂t
+ U · ∇σ − ∇U · σ − σ · ∇UT . (A.4)

To find the solution of the linearised upper-convected Maxwell equation for a linear
expansion test, first, we linearise the model equation for viscoelasticity about the
equilibrium: q = 0, U = 0, σ = GI, where q denotes displacement. Note that the
network displacement and velocity are related by

∂q
∂t

= U .

For a small perturbation about the equilibrium, σ = τ + GI, Eq. A.3 yields:

∇ · τ − ξ U = 0 (A.5)

λT
∂τ

∂t
+ τ = 2GλT D , (A.6)

where D = 1/2(∇U + ∇UT ) is the rate-of-deformation tensor. Since the deformation
is only in the radial direction, the network velocity is

U(r, t) = (Ur, Uθ) = (Ur, 0), (A.7)

where Ur = U · er and Uθ = U · eθ correspond to the radial and angular components of
the velocity. We obtain a dynamic equation for the radial velocity by applying the
divergence operator to Eq. A.6 and then combining it with Eq. A.5,

λT
dUr

dt
+ Ur =

2GλT

ξ

(1
r
∂Ur

∂r
+
∂2Ur

∂r2 −
1
r2 Ur

)
. (A.8)
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Because the material is undergoing a prescribed expansion due to non-zero velocity at
the boundary, we take the following boundary condition: Ur(R, t) = U0. Further, we
assume that initially the network experiences no deformation, Ur(r, 0) = 0. To find an
explicit expression for network velocity, we look for separable solutions of the form
Ur(r, t) =U(r)T (t):

ξ

2GλT

(λT
.
T + T

T

)
=

1
r
U′

U
+
U′′

U
−

1
r2 = −c2

k , (A.9)

where . denotes a time derivative and c2
k are non-zero constants. Then, the network

velocity is

Ur(r, t) =

∞∑
k=1

Dk J1(ckr) e−(2GλT c2
k/ξ+1)t/λT , (A.10)

where J1 represents the Bessel function of the first kind and Dk are the series
coefficients. Because of the non-homogeneous boundary condition, the solution in
Eq. A.10 does not satisfy the boundary condition and instead we write the solution to
the differential equation with the appropriate boundary conditions as,

Ũr(r, t) = Ur(r, t) + V(r) , (A.11)

where Ur solves the differential equation with the homogeneous boundary condition,
Ur(R, t) = 0, and the initial condition is Ur(0, r) = 0 − V(r) and V is such that it is the
steady state solution to Eq. A.8,

V =
2GλT

ξ

(1
r

V ′ + V ′′ −
1
r2 V

)
, (A.12)

with V(1) = U0. We find that the solution to the full system is

Ũr(r, t) =

∞∑
k=1

Dk J1(ckr) e−(2GλT c2
k/ξ+1)t/λT + U0

I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) , (A.13)

where I1 is the modified Bessel function of the first kind. From the boundary condition
on Ur:

Ur(R, t) = 0⇒ J1(ckR) = 0 , (A.14)

we find that ck are the zeros of the Bessel function of the first kind. The initial condition
on Ur,

Ur(r, 0) = −V(r)⇒
∞∑

k=1

Dk J1(ckr) = −U0

I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) , (A.15)
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yields the coefficients of the series expansion

Dk = −U0

1∫
0

J1(ckr)
I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) r dr

1∫
0

J1(ckr) · J1(ckr) r dr

, (A.16)

from the orthogonality of the Bessel functions of the first kind in the appropriate inner
product, 〈 f , g〉 =

∫ 1
0 x f (x) g(x) dx. Thus, the network velocity in the radial direction

r and at a particular time t is

Ũr(r, t) =

∞∑
k=1

Dk J1(ckr)e−(2GλT c2
k/ξ+1)t/λT + U0

I1

(
r
√

ξ
2GλT

)
I1

(√
ξ

2GλT

) , (A.17)

where ck denotes the zeros of the Bessel function of the first kind, Dk are the
coefficients provided in Eq. A.16, and U0 represents the prescribed velocity at the
boundary of the material.


